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5.1 Peer-to-peer Computing and Overlay Graphs 

 
 

 
 

 

Characteristics 
 

 Peer-to-peer (P2P) network systems use an application-level organization of the 
network overlay for flexibly sharing resources (e.g., files and multimedia 
documents) stored across network-wide computers. 

 All nodes are equal; communication directly between peers (no client-server) Allow 
location of arbitrary objects; no DNS servers required 

 Large combined storage, CPU power, other resources, without scalability costs 
 Dynamic insertion and deletion of nodes, as well as of resources, at low cost 

 
Features Performance 
self-organizing large combined storage, CPU power, and 

resources 
distributed control fast search for machines and data objects 
role symmetry for nodes Scalable 
anonymity efficient management of churn 
naming mechanism selection of geographically close servers 
security, authentication, 
trust 

redundancy in storage and paths 

Table:Desirable characteristics and performance features of P2P systems. 
 

 Napster 
 

 One of the earliest popular P2P systems, Napster [25], used a server-mediated central 
index architecture organized around clusters of servers that store direct indices of the 
files in the system. 

 Central server maintains a table with the following information of each registered client: 
(i) the client’s address (IP) and port, and offered bandwidth, and (ii) information about 
the files that the client can allow to share. 
1. A client connects to a meta-server that assigns a lightly-loaded server. 
2. The client connects to the assigned server and forwards its query and identity. 
3. The server responds to the client with information about the users connected to it 

and the files they are sharing. 
4. On receiving the response from the server, the client chooses one of the users from 

whom to download a desired file. The address to enable the P2P connection 
between the client and the selected user is provided by the server to the client. 

Users are generally anonymous to each other. The directory serves to provide the mapping 
from a particular host that contains the required content, to the IP address needed to download 
from it. 

UNIT V P2P & DISTRIBUTED SHARED MEMORY 
Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlays – 
Chord – Content addressable networks – Tapestry. Distributed shared memory: Abstraction 
and advantages – Memory consistency models –Shared memory Mutual Exclusion 



UNIT 5  DISTRIBUTED SYSTEMS 
 

5.2 Data indexing 

 
 Application layer overlays 

 A core mechanism in P2P networks is searching for data, and this mechanism depends on 
how (i) the data, and (ii) the network, are organized. Search algorithms for P2P networks 
tend to be data-centric, as opposed to the host-centric algorithms for traditional networks. 

 P2P search uses the P2P overlay, which is a logical graph among the peers that is used for 
the object search and object storage and management algorithms. Note that above the P2P 
over-lay is the application layer overlay, where communication between peers is point-to- 
pont (representing a logical all-to-all connectivity) once a connection is established. 

 The P2P overlay can be structured (e.g., hypercubes, meshes, butterfly networks, de Bruijn 
graphs) or unstructured 

 
Structured and Unstructured Overlays 

 
 Search for data and placement of data depends on P2P overlay (which can be thought 

of as being below the application level overlay) 
 Search is data-centric, not host-centric Structured P2P 

overlays: 
o ) E.g., hypercube, mesh, de Bruijngraphs 
o ) rigid organizational principles for object storage and object search 

 Unstructured P2P overlays: 
o ) Loose guidelines for object search and storage 
o ) Search mechanisms are ad-hoc, variants of flooding and random walk 

 Object storage and search strategies are intricately linked to the overlay structure as 
well as to the data organization mechanisms. 

 

 

The data in a P2P network is identified by using indexing. Data indexing allows the physical data 
independence from the applications. Indexing mechanisms can be classified as being centralized, 
local, or distributed 

 Centralized indexing, e.g., versions of Napster, DNS 
 Distributed indexing. Indexes to data scattered across peers. Access data through 

mechanisms such as Distributed Hash Tables (DHT). These differ in hash mapping, 
search algorithms, diameter for lookup, fault tolerance, churn resilience. 

 Local indexing. Each peer indexes only the local objects. Remote objects need to 
be searched for. Typical DHT uses flat key space. Used commonly in unstructured 
overlays (E.g., Gnutella) along with flooding search or random walk search. 

 
An alternate way to classify indexing mechanisms is as being a semantic index mechanism or 
a semantic-free index mechanism. 

 Semantic indexing - human readable, e.g., filename, keyword, database key. Supports 
keyword searches, range searches, approximate searches. 

 Semantic-free indexing. Not human readable. Corresponds to index obtained by use of 
hash function. 
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Simple Distributed Hash Table scheme 

 

Native node identifier Object/ file 
(address) space value space 

 
 

Mappings from node address space and object space in a simple DHT. 
 Highly deterministic placement of files/data allows fast lookup. 

But file insertions/deletions under churn incurs some cost. 
 Attribute search, range search, keyword search etc. not possible. 

 
5.2.1 Distributed indexing 

Structured overlays 

 

 The P2P network topology has a definite structure, and the placement of files or data in this 
network is highly deterministic as per some algorithmic mapping. (The placement of files can 
sometimes be “loose,” as in some earlier P2P systems like Freenet, where “hints” are used.) 

 The objective of such a deterministic mapping is to allow a very fast and deterministic lookup 
to satisfy queries for the data. These systems are termed as lookup systems and typically use 
a hash table interface for the mapping. 

 

Unstructured overlays 

 The P2P network topology does not have any particular controlled structure, nor is there any 
control over where files/data is placed. Each peer typically indexes only its local data objects, 
hence, local indexing is used. 

 Node joins and departures are easy – the local overlay is simply adjusted. File placement is 
not governed by the topology. Search for a file may entail high message overhead and high 
delays. However, complex queries are supported because the search criteria can be arbitrary. 

 Although the P2P network topology does not have any controlled structure, some topologies 
naturally emerge. 

 Power law random graph (PLRG) This is a random graph where the node degrees 
follow the power law. Here, if the nodes are ranked in terms of their degree, then the 
ith node has c/i neighbors, where c is a constant. 

 Normal random graph This is a normal random graph where the nodes typically have 
a uniform degree. 

 
Structured vs. unstructured overlays 
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5.3 Chord 

 
 
 

 
 

Unstructured Overlays: Properties 
 

 Semantic indexing possible =⇒ keyword, range, attribute-based queries Easily 
accommodate high churn 

 Efficient when data is replicated in network Good if user 
satisfied with ”best-effort” search 

 Network is not so large as to cause high delays in search 
 

Gnutella features 
 A joiner connects to some standard nodes from Gnutella directory 
 Ping used to discover other hosts; allows new host to announce itself 
 Pong in response to Ping ; Pong contains IP, port #, max data size for download 
 Query msgs used for flooding search; contains required parameters 
 QueryHit are responses. If data is found, this message contains the IP, port #, file size, 

download rate, etc. Path used is reverse path of Query 
 

 

The Chord protocol, uses a flat key space to associate the mapping between network 
nodes and data objects/files/values. The node address as well as the data 
object/file/value is mapped to a logical identifier in the common key space using a 
consistent hash function. 

 When a node joins or leaves the network of n nodes, only 1/n keys have to moved. 
 The Chord key space is flat, thus giving applications flexibility in map-ping their 

files/data to keys. Chord supports a single operation, lookup x , which maps a given 
key x to a network node. Specifically, Chord stores a file/object/value at the node to 
which the file/object/value’s key maps. 

 Two steps involved. 
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 ) Map the object value to its key 
 ) Map the key to the node in the nativeaddressspaceusing lookup 
 Common address space is a m-bit identifier (2m addresses), and this space is arranged 

on a logical ring mod(2m). 
 A key k gets assigned to the first node such that the node identifier equals or is greater 

than the key identifier k in the logical space address. 
 
 

 Chord: SimpleLookup 
 

 A simple key lookup algorithm that requires each node to store only 1 entry in its routing 
table works as follows. 

 Each node tracks its successor on the ring, in the variable successor; a query for key x 
is forwarded to the successors of nodes until it reaches the first node such that that 
node’s identifier y is greater than the key x, modulo 2m. 

 
 The result, which includes the IP address of the node with key y, is returned to the 

querying node along the reverse of the path that was followed by the query. 
 

 This mechanism requires O(1) local space but O(n) hops. 
 
 
 
 
 
 
 

Chord: Scalable Lookup 
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Chord 

 
 

Scalable Lookup - Example 
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 Chord: Managing Churn 
The code to manage dynamic node joins, departures, and failures is given in Algorithm 

Node joins 
 

 To create a new ring, a node i executes Create_New_Ring which creates a ring with the 
singleton node. 

 To join a ring that contains some node j, node i invokes Join_Ring j . Node j locates i’s 
successor on the logical ring and informs i of its successor. 

 Before i can participate in the P2P exchanges, several actions need to happen: i’s successor 
needs to update its predecessor entry to i, i’s predecessor needs to revise its successor field 
to i, i needs to identify its predecessor, the finger table at i needs to be built, and the finger 
tables of all nodes need to be updated to account for i’s presence. 

 This is achieved by procedures Stabilize , Fix_Fingers , and Check_Predecessor that are 
periodically invoked by each node. 

 
 
 
 
 
 
 
 
 
 
 

Algorithm Managing churn in Chord. Code shown is for node 



UNIT 5  DISTRIBUTED SYSTEMS 
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Figure illustrates the main steps of the joining process. A recent joiner node i that has 
executed Join_Ring · gets integrated into the ring by the following sequence: 

 
 
 

 

 

 How are node departures handled? or node failures? 
 For a Chord network with n nodes, each node is responsible for at most (1 + s) 

K/n keys, with “high probability”, where K is the total number of 
keys. Using consistent hashing, s can be shown to be bounded by O(log n). 

 The search for a successor in Locate Successor in a Chord network with n 
nodes requires time complexity O(log n) with high probability. 

 The size of the finger table is log (n) ≤ m. The 
average lookup time is 1/2 log (n). 
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 An indexing mechanism that maps objects to locations in CAN 
 object-location in P2P networks, large-scale storage management, wide-area 

name resolution services that decouple name resolution and the naming scheme 
 Efficient, scalable addition of and location of objects using 

location-independent names or keys. 
 3 basic operations: insertion, search, deletion of (key, value) pairs 
 d-dimensional logical Cartesian space organized as a d-torus logical topology, i.e.. d 

-dimensional mesh withwraparound. 
 Space partitioned dynamically among nodes, i.e., node i has space r (i ). For 

object v , its key r (v ) is mapped to a point ˙p in the space. (v, key (v )) tuple 
stored at node which is the present owner containing the point ˙p. 

 Analogously to retrieve object v. 
 

3 components of CAN 
) Set up CAN virtual coordinate space, partition among nodes 
) Routing in virtual coordinate space to locate the node that is assigned the 

region corresponding to ṗ 
) Maintain the CAN in spite of node departures and failures 

 

 CAN Initialization 
 

 Each CAN has a unique DNS name that maps to the IP address of a few bootstrap 
nodes. Bootstrap node: tracks a partial list of the nodes that it believes are currently 
in the CAN. 

 A joiner node queries a bootstrap node via a DNS lookup. Bootstrap node replies 
with the IP addresses of some randomly chosen nodes that it believes are in the 
CAN. 

 The joiner chooses a random point ˙p in the coordinate space. The joiner sends a 
request to one of the nodes in the CAN, of which it learnt in Step 2, asking to be 
assigned a region containing ˙p. The recipient of the request routes the request to 
the owner old owner (˙p) of the region containing ˙p, using CAN routing algorithm. 

 The old owner (˙p) node splits its region in half and assigns one half to the joiner. 
The region splitting is done using an a priori ordering of all the dimensions. This 
also helps to methodically merge regions, if necessary. The (k, v ) tuples for which 
the key k now maps to the zone to be transferred to the joiner, are also transferred 
to the joiner. 

 The joiner learns the IP addresses of its neighbours from old owner (˙p). The 
neighbors are old owner (˙p) and a subset of the neighbours of old owner (˙p). old 
owner (˙p) also updates its set of neighbours. The new joiner as well as old owner 
(˙p) inform their neighbours of the changes to the space allocation, In fact, each 
node has to send an immediate update of its assigned region, followed by periodic 
HEARTBEAT refresh messages, to all its neighbours. 

5.4 Content Addressable Network (CAN) 
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When a node joins a CAN, only the neighbouring nodes in the coordinate space are required 
to participate. The overhead is thus of the order of the number of neighbours, which is O(d ) 
and independent of n. 

 
 CAN routing 

 CAN routing uses the straight-line path from the source to the destination in the logical 
Euclidean space. 

 This routing is realized as follows. Each node maintains a routing table that tracks its 
neighbor nodes in the log-ical coordinate space. In d-dimensional space, nodes x and y 
are neigh-bors if the coordinate ranges of their regions overlap in d − 1 dimensions, and 
abut in one dimension. 

 
 

 The routing table at each node tracks the IP address and the virtual coor-dinate region of 
each neighbor. To locate value v, its key k v is mapped to a point p- whose coordinates 
are used in the message header. 

 Knowing the neighbors’ region coordinates, each node follows simple greedy routing by 
forwarding the message to that neighbor having coordinates that are closest to the 
destination’s coordinates 

 
 CAN Maintainence 

 
 Voluntary departure: Hand over region and (key, value) tuples to a neighbor. 

Neighbor choice: formation of a convex region after merger of regions 
 Otherwise, neighbor with smallest volume. However, regions are not merged and 

neighbor handles both regions until background reassignment protocol is run. 
 Node failure detected when periodic HEARTBEAT message not received by 

neighbors. They then run a TAKEOVER protocol to decide which neighbor will 
own dead node’s region. This protocol favors region with smallest volume. 

 Despite TAKEOVER protocol, the (key, value) tuples remain lost until 
background region reassignment protocol is run. 

 Background reassignment protocol: for 1-1 load balancing, restore 1-1 node to 
region assignment, and prevent fragmentation. 
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5.5 Tapestry 

 
 
 

 
 
 

 CAN Optimizations 
Improve per-hop latency, path length, fault tolerance, availability, and load balancing. 
These techniques typically demonstrate a trade-off. 

 Multiple dimensions. As the path length is O(d · n1/d ), increasing the number of 
dimensions decreases the path length and increases routing fault tolerance at the 
expense of larger state space per node. 

 Multiple realities or coordinate spaces. The same node will store different (k, v ) 
tuples belonging to the region assigned to it in each reality, and will also have a 
different neighbour set. The data contents (k, v ) get replicated, leading to higher 
availability. Furthermore, the multiple copies of each (k, v) tuple offer a choice. 

 Routing fault tolerance also improves. 
 Use delay metric instead of Cartesian metric for routing 
 Overloading coordinate regions by having multiple nodes assigned to each 

region. Path length and latency can reduce, fault tolerance improves, per-hop 
latency decreases. 

 Use multiple hash functions. Equivalent to using multiple realities. 
Topologically sensitive overlay. This can greatly reduce per-hop latency. 

 
CAN Complexity: O(d· ) for a joiner. O(d/4 log (n)) for routing. 
Node departure O(d2). 

 

 

 The Tapestry P2P overlay network provides efficient scalable location-independent routing 
to locate objects distributed across the Tapestry nodes 

 Nodes and objects are assigned IDs from common space via a distributed hashing. 
 Hashed node ids are termed VIDs or vid . Hashed object identifiers are termed GUIDs or 

OG . 
 ID space typically has m = 160 bits, and is expressed in hexadecimal. 
 If a node v exists such that vid = OG exists, then that v become the root. If such a v does 

not exist, then another unique node sharing the largest common prefix with OG is chosen 
to be the surrogate root. 

 The object OG is stored at the root, or the root has a direct pointer to the object. 
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 To access object O, reach the root (real or surrogate) using prefix routing Prefix routing 
to select the next hop is done by increasing the prefix match of the next hop’s VID with 
the destination OGR . Thus, a message destined for 
OGR = 62C 35 could be routed along nodes with VIDs 6****, then 62***, 
then 62C**, then 62C3*, and then to 62C35 

 
 Tapestry - Routing Table 

 
 Let M = 2m. The routing table at node vid contains b · logb M entries, organized in 
 logbM levels i = 1 . . . logbM. Each entry is of the form (wid , IP address). 
 Each entry denotes some “neighbour” node VIDs with a (i − 1)-digit prefix match 

with vid – thus, the entry’s wid matches vid in the (i − 1)-digit prefix. Further, in 
level i, for each digit j in the chosen base (e.g., 0, 1,... E, F when b = 16), there is an 
entry for which the ith digit position is j. 

 For each forward pointer, there is a backward pointer. 

 
Some example links at node with identifier ”7C25”. Three links each of levels 1 through 4 
are labeled. 

 
 Tapestry: Routing 

 
 The j th entry in level i may not exist because no node meets the criterion. This is 

a hole in the routing table. 
 Surrogate routing can be used to route around holes. If the jth entry in level i should 

be chosen but is missing, route to the next non-empty entry in level i , using 
wraparound if needed. All the levels from 1 to logb 2m need to be considered in 
routing, thus requiring logb 2m hops. 
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An example of routing from FAB11 to 62C35. The numbers on the arrows show the level of the 
routing table 

 Tapestry: RoutingAlgorithm 
 
 

 Surrogate routing leads to a unique root. 
 For each vid , the routing algorithm identifies a unique spanning tree rooted at vid . 

 

 Tapestry: Object Publication and Object Search 
 

 The unique spanning tree used to route to vid is used to publish and locate an object 
whose unique root identifier OGR is vid . 

 A server S that stores object O having GUID OG and root OGR periodically publishes the 
object by routing a publish message from S towards OGR . 

 At each hop and including the root node OGR , the publish message creates a pointer to the 
object 

 This is the directory info and is maintained in soft-state. 
 To search for an object O with GUID OG , a client sends a query destined for the root 

OGR . 
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o ) Along the logb 2m hops, if a node finds a pointer to the object residing on 
server S, the node redirects the query directly to S. 

o ) Otherwise, it forwards the query towards the root OGR which is 
guaranteedto have the pointer for the location mapping. 

 A query gets redirected directly to the object as soon as the query path overlaps the publish 
path towards the same root 

 
 
 

 
An example showing publishing of object with identifier 72EA1 at two replicas 1F329 and 
C2B40. A query for the object from 094ED will find the object pointer at 7FAB1. A query 
from 7826C will find the object pointer at 72F11. A query from BCF35 will find the object 
pointer at 729CC. 

 
 Tapestry: Node Insertions 

 
 

 For any node Y on the path between a publisher of object O and the root 
 GOR , node Y should have a pointer to O. 
 Nodes which have a hole in their routing table should be notified if the insertion 

of node X can fill that hole. 
 If X becomes the new root of existing objects, references to those objects should 

now lead to X . 
 The routing table for node X must be constructed. 
 The nodes near X should include X in their routing tables to perform more efficient 

routing. 
 

The main steps in node insertion are as follows: 
 
 

1. Node X uses some gateway node into the Tapestry network to route a message to itself. This 
leads to its “surrogate,” i.e., the root node with identifier closest to that of itself (which is 
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5.6 Distributed Shared Memory 

 
Xid). The surrogate Z identifies the length of the longest common prefix that Zid shares with 
Xid. 

2. Node Z initiates a MULTICAST-CONVERGECAST on behalf of X by essentially creating 
a logical spanning tree as follows. Acting as a root, 

Z contacts all the j nodes, for all j 0 1 b − 1 (tree level 1). These are the nodes with prefix 
followed by digit j. Each such (level 1) node Z1 contacts all the prefix Z1 + 1 j nodes, for all 
j 0 1 b − 1 (tree level 2). This continues up to level logb2m − and completes the 
MULTICAST. The nodes at this level are the leaves 

 

 Tapestry: Node Deletions and Failures 
 

Node deletion 
 Node A informs the nodes to which it has (routing) backpointers. It also provides 

them with replacement entries for each level from its routing table. This is to 
prevent holes in their routing tables. (The notified neighbours can periodically run 
the nearest neighbour algorithm to fine-tune their tables.) 

 The servers to which A has object pointers are also notified. The notified servers 
send object republish messages. 

 During the above steps, node A routes messages to objects rooted at itself to their 
new roots. On completion of the above steps, node A informs thenodes reachable 
via its backpointers and forward pointers that it is leaving, and then leaves. 

Node failures: Repair the object location pointers, routing tables and mesh, using the redundancy 
in the Tapestry routing network. Refer to the book for the algorithms 

 
Complexity 

 
 A search for an object expected to take (logb2m) hops. However, the routing tables 

are optimized to identify nearest neighbour hops (as per the space metric). Thus, 
the latency for each hop is expected to be small, compared to that for CAN and 
Chord protocols. 

 The size of the rou·ti·ng table at each node is c b logb2m, where c is the constant 
that limits the size of the neighbour set that is maintained for fault-tolerance. 

The larger the Tapestry network, the more efficient is the performance. Hence, better if different 
applications share the same overlay. 

 

 

 Distributed Shared Memory Abstractions 
 

Distributed shared memory (DSM) is an abstraction provided to the programmer of a distributed 
system. It gives the impression of a single monolithic memory, as in traditional von Neumann 
architecture. Programmers access the data across the network using only read and write primitives, 
as they would in a uniprocessor system. Programmers do not have to deal with send and receive 
communication primitives and the ensuing complexity of dealing explicitly with synchronization 
and consistency in the message-passing model. 
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 communicate with Read/Write ops in shared virtual space No Send and Receive 
primitives to be used by application 

o ) Under covers, Send and Receive used by DSM manager 
 Locking is too restrictive; need concurrent access 
 With replica management, problem of consistency arises! 

 
 

 
 Advantages/Disadvantages of DSM 
Advantages: 

Shields programmer from Send/Receive primitives 
Single address space; simplifies passing-by-reference and passing complex data structures 
Exploit locality-of-reference when a block is moved 
DSM uses simpler software interfaces, and cheaper off-the-shelf hardware. Hence cheaper 
than dedicated multiprocessor systems 
No memory access bottleneck, as no single bus Large virtual 
memory space 

 DSM programs portable as they use common DSM programming interface Disadvantages: 
 Programmers need to understand consistency models, to write correct programs 
 DSM implementations use async message-passing, and hence cannot be more efficient 

than msg-passing implementations 
 By yielding control to DSM manager software, programmers cannot use their own msg- 

passing solutions. 
 

 Issues in Implementing DSM Software 
 

 Semantics for concurrent access must be clearly specified 
Semantics – replication? partial? full? read-only? write-only? 
Locations for replication (for optimization) 

 If not full replication, determine location of nearest data for access Reduce 
delays, # msgs to implement the semantics of concurrent access 

 Data is replicated or cached Remote 
access by HW or SW 

 Caching/replication controlled by HW or SW 
 DSM controlled by memory management SW, OS, language run-time system 
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 Comparison of Early DSM Systems 
 
 

Type of DSM Examples Managem 
ent 

Caching Remote 
access 

single-bus 
multiprocessor 

Firefly, 
Sequent 

by MMU hardware 
control 

by 
hardware 

switched 
multiprocessor 

Alewife, 
Dash 

by MMU hardware 
control 

by 
hardware 

NUMA system Butterfly, 
CM* 

by OS software 
control 

by 
hardware 

Page-based 
DSM 

Ivy, 
Mirage 

by OS software 
control 

by 
software 

Shared variable 
DSM 

Midway, 
Munin 

by 
language 
runtime 
system 

software 
control 

by 
software 

Shared object 
DSM 

Linda, 
Orca 

by 
language 
runtime 
system 

software 
control 

by 
software 

 

Memory consistency models 
 

The memory consistency model defines the set of allowable memory access orderings. 
 

Memory Coherence 
Memory coherence is the ability of the system to execute memory operations correctly. 

 si memory operations by Pi 

 (s1 + s2 + . . . sn)!/(s1!s2! . . . sn!) possible interleavings 
 Memory coherence model defines which interleavings are permitted Traditionally, Read 

returns the value written by the most recent Write ”Most recent” Write is ambiguous 
with replicas and concurrent accesses 

DSM consistency model is a contract between DSM system and application programmer 
 

   Sequential invocations and responses in a DSM system, without any pipelining 
 

 Strict Consistency/Linearizability/Atomic Consistency 
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Strict consistency 

 

The strictest model, corresponding to the notion of correctness on the tradi-tional Von Neumann 
architecture or the uniprocessor machine, requires that any Read to a location (variable) should 
return the value written by the most recent Write to that location (variable). 

Two salient features of such a system are the following: (i) a common global time axis is 
implicitly available in a uniprocessor system; (ii) each write is immediately visible to all 
processes. 

1. A Read should return the most recent value written, per a global time axis. For operations 
that overlap per the global time axis, the following must hold. 

2 All operations appear to be atomic and sequentially executed. 
3 All processors see the same order of events, equivalent to the global time ordering of non- 
overlapping events. 

 
 
 
 
 
 

Sequential invocations and responses to each Read or Write operation. 

Strict Consistency / Linearizability: Examples 
Linearlzability: Implementation 

 
 Simulating global time axis is expensive. 
 Assume full replication, and total order broadcast support. 
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Linearizability: Implementation 
 

When a Read in simulated at other processes, there is a no-op. Why do Reads 
participate in total order broadcasts? 
Reads need to be serialized w.r.t. other Reads and all Write operations. See counter- 
example where Reads do not participate in total order broadcast. 

 Sequential Consistency 
 
 

Linearizability or strict/atomic consistency is difficult to implement because the absence of a 
global time reference in a distributed system necessitates that the time reference has to be 
simulated. This is very expensive. Programmers can deal with weaker models. The first weaker 
model, that of sequential con-sistency (SC) was proposed by Lamport and uses logical time 
reference instead of the global time reference. 

 The result of any execution is the same as if all operations of the processors were 
executed in some sequential order. 

 The operations of each individual processor appear in this sequence in the local 
program order. 
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Any interleaving of the operations from the different processors is possible. But all processors 
must see the same interleaving. Even if two operations from different processors (on the same or 
different variables) do not overlap in a global time scale, they may appear in reverse order in the 
common sequential order seen by all. See examples used for linearizability 

 
Only Writes participate in total order BCs. Reads do not because: 

 all consecutive operations by the same processor are ordered in that same order (no 
pipelining), and 

 Read operations by different processors are independent of each other; to be 
ordered only with respect to the Write operations. 

 
Direct simplification of the LIN algorithm. Reads executed atomically. Not so 
for Writes. Suitable for Read-intensive programs. 

 
Sequential Consistency using Local Read Algorithm 

 

 
Sequential Consistency using Local Write Algorithm 
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 Causal Consistency 
 

In SC, all Write ops should be seen in common order. 
For causal consistency, only causally 
related Writes should be seen in common P1 

order. 
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Pipelined RAM or Processor Consistency 
 

PRAM memory 
 Only Write ops issued by the same processor are seen by others in the 

order they were issued, but Writes from different processors may be 
seen by other processors in different orders. 

 
 PRAM can be implemented by FIFO broadcast? PRAM memory can 

exhibit counter-intuitive behavior, see below. 

 
 

Slow Memory 
The next weaker consistency model is that of slow memory]. This model represents a location- 
relative weakening of the PRAM model. In this model, only all Write operations issued by the 
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same processor and to the same memory location must be observed in the same order by all the 
processors. 

 
 

Hierarchy of Consistency Models 

 
 

Synchronization-based Consistency Models: Weak Consistency 
Consistency conditions apply only to special 
synchronization” instructions, e.g., 

 
 

barrier synchronization 
Non-sync statements may be executed in any order by various processors. 
E.g.,weak consistency, release consistency, entry consistency 

 

Weak consistency: 
All Writes are propagated to other processes, and all Writes done elsewhere 
are brought locally, at a sync instruction. 

 
 Accesses to sync variables are sequentially consistent 
 Access to sync variable is not permitted unless all Writes elsewhere have completed 
 No data access is allowed until all previous synchronization variable accesses have 
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5.8 Shared Memory Mutual Exclusion: Bakery Algorithm  

 
been performed 

Drawback: cannot tell whether beginning access to shared variables (enter CS), or finished 
access to shared variables (exit CS). 

 
Synchronization based Consistency Models: 
Release Consistency and Entry Consistency 
Two types of synchronization Variables: Acquire and Release 

 
Release Consistency 

Acquire indicates CS is to be entered. Hence all Writes from other processors should be 
locally reflected at this instruction 
Release indicates access to CS is being completed. Hence, all Updates made locally 
should be propagated to the replicas at other processors. 
Acquire and Release can be defined on a subset of the variables. 
If no CS semantics are used, then Acquire and Release act as barrier synchronization 
variables. 
Lazy release consistency: propagate updates on-demand, not the PRAM way. 

 
Entry Consistency 

Each ordinary shared variable is associated with a synchronization variable (e.g., lock, 
barrier) 
For Acquire /Release on a synchronization variable, access to only those ordinary variables 
guarded by the synchronization variables is performed. 

 

 

 Lamport’s bakery algorithm 
 

 Lamport proposed the classical bakery algorithm for n-process mutual exclusion in shared 
memory systems [18]. The algorithm is so called because it mimics the actions that 
customers follow in a bakery store. A process wanting to enter the critical section picks a 
token number that is one greater than the elements in the array choosing 1 n . 

 Processes enter the critical section in the increasing order of the token numbers. In case of 
concurrent accesses to choosing by multiple processes, the processes may have the same 
token number. In this case, a unique lexicographic order is defined on the tuple token pid 
, and this dictates the order in which processes enter the critical section. The algorithm for 
process i is given in Algorithm. 

 The algorithm can be shown to satisfy the three requirements of the critical section 
problem: (i) mutual exclusion, (ii) bounded waiting, and (iii) progress. 
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Mutual exclusion 
) Role of line (1e)? Wait for others’ timestamp choice to stabilize ... 
) Role of line (1f)? Wait for higher priority (lex. lower timestamp) process to 

enter CS 
 

Bounded waiting: Pi can be overtaken by other processes at most once (each) 
Progress: lexicographic order is a total order; process with lowest timestamp in lines 
(1d)-(1g) enters CS 

 
Space complexity: lower bound of n registers Time complexity: (n) time for 
Bakery algorithm 

 
 
 
 
 
 

 Lamport’s WRWR mechanism and fast mutual exclusion 
 
 

Lamport’s fast mutex algorithm takes O(1) time in the absence of contention. However it 
compromises on bounded waiti−ng. Use−s W(x)−- R(y ) - W (y)-  R(x) sequence necessary and 
sufficient to check for contention, and safely enter CS 

 
Lamport’s Fast Mutual Exclusion Algorithm 
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Shared Memory: Fast Mutual Exclusion Algorithm 
 

Need for a boolean vector of size n: For Pi, there needs to be a trace of its identity 
and that it had written to the mutex variables. Other processes need to know who (and 
when) leaves the CS. Hence need for a boolean array b[1..n]. 

 

Examine all possible race conditions in algorithm code to analyze the algorithm. 
 

Hardware Support for Mutual Exclusion 
Hardware support can allow for special instructions that perform two or more 
operations atomically. 
Test&Set and Swap are each executed atomically!! 

 
Definitions of synchronization operations Test&Set and Swap. 
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Mutual Exclusion using Swap 
 

 
 
 

Mutual Exclusion using Test&Set, with Bounded Waiting 
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Code shown is for process Pi, 1 ≤ i ≤ n. 
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UNIT-4 QUESTIONS 
 

What is rollback? and explain the several types of messages for rollback. (13) 

Examine briefly about global states with examples. (13) 

Describe the issues involved in a failure recovery with the help of a distributed computation. (13) 

Elaborate the various checkpoint-based rollback-recovery techniques.(13) 

Describe the pessimistic logging , optimistic logging and casual logging.(13) 

What are min-process check pointing algorithms? Explain it detail.(7) 
Examine Deterministic and non-deterministic events. (6) 

Summarize the koo–toueg coordinated check pointing algorithm.(7) 
Explain the rollback recovery algorithm. (6) 

. Demonstrate in detail about the juang–venkatesan algorithm for asynchronous check pointing and 
recovery.(13) 
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. Discuss in detail about some assumptions underlying the study of agreement algorithms. (13) 

. What is byzantine agreement problem? Explain the two popular flavours of the byzantine agreement 
problem. 

. Develop an overview of the results and lower bounds on solving the consensus problem under different 
assumptions. 

. Explain agreement in (message-passing) synchronous systems with failures.(13) 

. Give byzantine agreement tree algorithm and illustrate with an example. (13) 

. Analyze on phase-king algorithm for consensus.(13) 

 

. Design a system model of distributed system consisting of four processes and explain the interactions with 
the outside world.(15) 

. Explain with examples of consistent and inconsistent states of a distributed system.(15) 

. Consider the following simple check pointing algorithm. A process takes a local checkpoint right after 
sending a message. Create that the last checkpoint at all processes will always be 

. consistent. What are the trade-offs with this method?(15) 

. Give and analyse a rigorous proof of the impossibility of a min- process, non blocking check pointing 
algorithm.(15) 
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Explain the structured overlays and unstructured overlays in distributed indexing. (13) 

i) What is meant by napster legacy? Explain.(7) 
Give a brief account on Indexing mechanisms. (6 
Examine the chord protocol with simple key lookup algorithm.(13) 
Illustrate in detail about A scalable object location algorithm in chord.(13) 

Discuss on managing churn in chord.(13) 
Describe briefly about the following: 
i) Content-Addressable Network (CAN) initialization (6) 
ii) CAN routing (7). 
Point out tapestry P2P overlay network and its routing with an example. (13) 

Discuss the CAN maintenance and CAN optimizations. (13) 

State about the consistency models: entry consistency, weak consistency, and release 
consistency.(13) 
Summarize in detail how node insertion and node deletion are applied in tapestry. (13) 

i) Illustrate the advantages and disadvantages of DSM.(6) 
ii) Point out the main issues in designing a DSM system (7) 
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Examine how to implement linearizability (LIN) using total order broadcasts.(13) 

Analyse how to implement Sequential consistency in a distributed system.(13) 

Describe lamport’s bakery algorithm lamport’s WRWR mechanism and fast mutual exclusion. (13) 

 
User ‘A’ in delhi wishes to send a file for printing to user ‘B’ in florida, whose system is connected to a 
printer; while user ‘C’ from tokyo wants to save a video file in the hard disk of user ‘D’ in london. 
Analyze and discuss the required peer-to-peer network architecture.(15) 

Evaluate a formal proof to justify the correctness of algorithm that implements sequential consistency 
using local read operations.(15) 

Develop a detailed implementation of causal consistency, and provide a correctness argument for 
your implementation.(15) 

 


